Here are brief descriptions of scientific results obtained with MagAO, Clio, and VisAO. At the end of each you will find links to the science paper, including freely downloadable preprints.
χ2 slices at the fixed contrast ratio for all L observations as well as 2013 NaCo Ks observations, with filled contours at 1 to > 4σ confidence limits. The line indicates a circular orbit in the plane of the outer disk. The ×s show the initial position of the putative companion from our re-reduction of the 2010 NaCo L data, while the circles show the predicted position(s) of a planet on the orbit. We plot two since the planet could be orbiting in either direction.
Abstract: We present multi-epoch non-redundant masking observations of the T Cha transition disk, taken at the VLT and Magellan in H, Ks, and L’ bands. T Cha is one of a small number of transition disks that host companion candidates discovered by high-resolution imaging techniques, with a putative companion at a position angle of 78 degrees, separation of 62 mas, and contrast at L’ of 5.1 mag. We find comparable binary parameters in our re-reduction of the initial detection images, and similar parameters in the 2011 L’, 2013 NaCo L’, and 2013 NaCo Ks data sets. We find a close-in companion signal in the 2012 NaCo L’ dataset that cannot be explained by orbital motion, and a non-detection in the 2013 MagAO/Clio2 L’ data. However, Monte-carlo simulations show that the best fits to the 2012 NaCo and 2013 MagAO/Clio2 followup data may be consistent with noise. There is also a significant probability of false non-detections in both of these data sets. We discuss physical scenarios that could cause the best fits, and argue that previous companion and scattering explanations are inconsistent with the results of the much larger dataset presented here.
Sallum, S., et al. “New Spatially Resolved Observations of the T Cha Transition Disk and Constraints on the Previously Claimed Substellar Companion” ApJ, 801, 85, 2015arxiv preprint
CT Cha in MagAO filters. Image contrasts are adjusted to bring out the objects. Top row: unsaturated dataset showing the PSF. Middle row: reduced, saturated dataset before any halo subtraction. Bottom row: primary’s halo removed by subtracting a rota- tionally symmetric PSF.
Abstract:
We used the Magellan adaptive optics (MagAO) system and its VisAO CCD camera to image the young low mass brown dwarf companion CT Chamaeleontis B for the first time at visible wavelengths. We detect it at r’, i’, z’, and Ys. With our new photometry and Teff~2500 K derived from the shape of its K-band spectrum, we find that CT Cha B has Av = 3.4+/-1.1 mag, and a mass of 14-24 Mj according to the DUSTY evolutionary tracks and its 1-5 Myr age. The overluminosity of our r’ detection indicates that the companion has significant Halpha emission and a mass accretion rate ~6*10^-10 Msun/yr, similar to some substellar companions. Proper motion analysis shows that another point source within 2″ of CT Cha A is not physical. This paper demonstrates how visible wavelength AO photometry (r’, i’, z’, Ys) allows for a better estimate of extinction, luminosity, and mass accretion rate of young substellar companions.
Wu, Y.-L., et al. “New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion CT Chamaeleontis B with the Magellan AO System” ApJ, 801, 4, 2015arxiv preprint
HR 4796 at L’ (3.8 microns)HR 4796 at z’ (0.91 microns)
Abstract:
We present resolved images of the HR 4796A debris disk using the Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the disk at 0.77 microns, 0.91 microns, 0.99 microns, 2.15 microns, 3.1 microns, 3.3 microns, and 3.8 microns. We find that the deprojected center of the ring is offset from the star by 4.76 ± 1.6 AU and that the deprojected eccentricity is 0.06 ± 0.02, in general agreement with previous studies. We find that the average width of the ring is 14+3-2% (11.1+2.4-1.6 AU), also comparable to previous measurements. Combining our new scattered light data with archival Hubble Space Telescope images at ~0.5-2 mum, along with previously unpublished Spitzer/MIPS thermal emission data and all other literature thermal data, we set out to constrain the chemical composition of the dust grains. After testing 19 individual root compositions and more than 8400 unique mixtures of these compositions, we find that good fits to the scattered light alone and thermal emission alone are discrepant, suggesting that caution should be exercised if fitting to only one or the other. When we fit to both data sets simultaneously, we find that silicates and organics are generally the most favored, while large abundances of water ice are usually not favored. These results suggest the HR 4796A dust grains are similar to interstellar dust and solar system comets, though improved modeling is necessary to place better constraints on the exact chemical composition of the dust.
MagAO+VisAO images of the companion HD 142527 B, made with our special “simultaneous differential imaging”, or SDI, mode.
We utilized MagAO to obtain very high-resolution visible light images of HD142527 with MagAO’s VisAO science camera. In the median seeing conditions of the 6.5m Magellan telescope (0.5 − 0.7′′), we find MagAO delivers 24-19% Strehl at Ha (0.656 mm). We detect a faint companion (HD142527B) embedded in this young transitional disk system at just 86.3±1.9 mas (~12 AU) from the star. The companion is detected in both Halpha and a continuum filter (Dmag=6.33±0.20 mag at Ha and 7.50±0.25 mag in the continuum filter). This provides confirmation of the tentative companion discovered by Biller and co-workers (a past graduate of Dr. Close, who is now a professor at the University of Edinburgh) with sparse aperture masking at the 8m VLT.
MagAO found that the Halpha emission from the ~0.25 solar mass companion (EW=180 Angstroms) implies a mass accretion rate of ~5.9×10-10 Msun/yr, and a total accretion luminosity of 1.2% Lsun. Assuming a similar accretion rate, we estimate that a 1 Jupiter mass gas giant could have considerably better (50-1000x) planet/star contrasts at Halpha than at H band (COND models) for a range of optical extinctions (3.4-0 mag). We suggest that 0.5-5 Mjup extrasolar planets in their gas accretion phase should be much more luminous at Halpha than in the NIR. This is the motivation for our new MagAO GAPplanetS survey for extrasolar planets which is a key project for the MagAO team, and in particular senior PhD student Kate Follette who has lead most of the GAPplanets work to date.
Here is the Astrophysical Journal abstract:
“We utilized the new high-order 585 actuator Magellan Adaptive Optics system (MagAO) to obtain very high-resolution visible light images of HD 142527 with MagAO’s VisAO science camera. In the median seeing conditions of the 6.5 m Magellan telescope (0.”5-0.”7), we find MagAO delivers 24%-19% Strehl at Halpha (0.656 mum). We detect a faint companion (HD 142527B) embedded in this young transitional disk system at just 86.3 ± 1.9 mas (~12 AU) from the star. The companion is detected in both Halpha and a continuum filter (Deltamag = 6.33 ± 0.20 mag at Halpha and 7.50 ± 0.25 mag in the continuum filter). This provides confirmation of the tentative companion discovered by Biller and co-workers with sparse aperture masking at the 8 m Very Large Telescope. The Halpha emission from the ~0.25 solar mass companion (EW = 180 Å) implies a mass accretion rate of ~5.9 × 10-10 M sun yr-1 and a total accretion luminosity of 1.2% L sun. Assuming a similar accretion rate, we estimate that a 1 Jupiter mass gas giant could have considerably better (50-1000×) planet/star contrasts at Halpha than at the H band (COND models) for a range of optical extinctions (3.4-0 mag). We suggest that ~0.5-5 M jup extrasolar planets in their gas accretion phase could be much more luminous at Halpha than in the NIR. This is the motivation for our new MagAO GAPplanetS survey for extrasolar planets.”
You can read more about it here:
Close, L. M., et al. “Discovery of Hα Emission from the Close Companion inside the Gap of Transitional Disk HD 142527” ApJ, 781, L30, 2014ADSarxiv preprint
There are a number of factors that have pushed extrasolar planet imagers to work in the infrared. The first is that young planets are very hot, so they are brighter in the infrared. In fact, they become very faint at shorter “optical” wavelengths. The second factor is that adaptive optics (AO), the technology we use to image exoplanets, has normally worked better in the infrared. You could say that the stars twinkle less there. But to know as much as we can about exoplanets and their atmospheres, we want to image them at as many wavelengths as we can. So we used MagAO’s VisAO camera to image the extrasolar planet beta Pictoris b with our CCD. This is the first time that has been done from the ground, and shows that we are pushing the capabilities of AO to ever shorter (and more difficult) wavelengths.
An image of the exoplanet Beta Pictoris b made with the Magellan Adaptive Optics (MagAO) VisAO camera. This image was made using a CCD camera, which is essentially the same technology as a cell phone camera. The planet is nearly 100,000 times fainter than its star, and orbits its star at roughly the same distance as Saturn from our Sun.
Abstract: We present the first ground-based CCD (λ<1μm) image of an extrasolar planet. Using MagAO's VisAO camera we detected the extrasolar giant planet (EGP) β Pictoris b in Y-short (YS, 0.985 μm), at a separation of 0.470±0.010′′ and a contrast of (1.63±0.49)×10−5. This detection has a signal-to-noise ratio of 4.1, with an empirically estimated upper-limit on false alarm probability of 1.0%. We also present new photometry from the NICI instrument on the Gemini-South telescope, in CH4S,1% (1.58 μm), KS (2.18μm), and Kcont (2.27 μm). A thorough analysis of our photometry combined with previous measurements yields an estimated near-IR spectral type of L2.5±1.5, consistent with previous estimates. We estimate log(Lbol/LSun) = −3.86±0.04, which is consistent with prior estimates for β Pic b and with field early-L brown dwarfs. This yields a hot-start mass estimate of 11.9±0.7 MJup for an age of 21±4 Myr, with an upper limit below the deuterium burning mass. Our Lbol based hot-start estimate for temperature is Teff=1643±32 K (not including model dependent uncertainty). Due to the large corresponding model-derived radius of R=1.43±0.02 RJup, this Teff is ∼250 K cooler than would be expected for a field L2.5 brown dwarf. Other young, low-gravity (large radius), ultracool dwarfs and directly-imaged EGPs also have lower effective temperatures than are implied by their spectral types. However, such objects tend to be anomalously red in the near-IR compared to field brown dwarfs. In contrast, β Pic b has near-IR colors more typical of an early-L dwarf despite its lower inferred temperature.
For more on our result see:
Males, J. R., et al. "Magellan Adaptive Optics first-light observations of the exoplanet β Pic b. I. Direct imaging in the far-red optical with MagAO+VisAO and in the near-IR with NICI"
ApJ, 786, 32, 2014ADSarxiv preprint