Blog

MagAO Discovers a Planet

Today, Vanessa and the rest of the MagAO team announced the discovery of a new planet, named HD 106906 b. Read on for the exciting details.

You can find the original press release at UA News, and read more at: Discovery News, NBC News, Science Daily, Phys.org, ScienceBlog, Nature World News, CBS News, the LA Times, the Daily Mail, and many more (national and international).

Here is Universe Todays’ take, and more from The Monitor.

The Bad Astronomer has some thoughts about HD 106906 b too. A very nice retelling of the story.

In local news:  KOLD came for an interview. They were on campus for the unveiling of the latest Giant Magellan Telescope mirror segment, a major feat in and of itself. The Daily Star also posted a nice piece, as did the Daily Wildcat.

In an interesting twist, >100,000 people have signed a petition to the IAU and Vanessa to name this planet Gallifrey. Alas, we couldn’t give them good news.

From all that, we made the front pages at Wikipedia, Google News, Yahoo, and Slashdot.

 

Ok, enough hype, here’s the scoop:

Here is the Extrasolar Planet Encyclopedia entry for HD 106906 b.

UA Astronomers Discover Planet That Shouldn’t Be There

Artist’s conception of a young planet in a distant orbit around its host star. The star still harbors a debris disk, remnant material from star and planet formation, interior to the planet’s orbit (similar to the HD106906 system).
Image courtesy NASA/JPL-Caltech.

An international team of astronomers, led by a University of Arizona graduate student, has discovered the most distantly orbiting planet found to date around a single, sun-like star. It is the first exoplanet discovered at the UA.

Weighing in at 11 times Jupiter’s mass and orbiting its star at 650 times the average Earth-Sun distance, planet HD 106906 b is unlike anything in our own Solar System and throws a wrench in planet formation theories.

“This system is especially fascinating because no model of either planet or star formation fully explains what we see,” said Vanessa Bailey, a fifth-year graduate student in the UA’s department of astronomy, who led the research.

It is thought that planets close to their stars, like Earth, coalesce from small asteroid-like bodies born in the primordial disk of dust and gas that surrounds a forming star. However, this process acts too slowly to grow giant planets far from their star. Another mechanism proposes that giant planets can form from a fast, direct collapse of disk material. However, primordial disks rarely contain enough mass in their outer reaches to allow a planet like HD 106906 b to form. Several alternative hypotheses have been put forward including formation like a mini binary star system.

“A binary star system can be formed when two adjacent clumps of gas collapse more or less independently to form stars, and these stars are close enough to each other to exert a mutual gravitation attraction and bind them together in an orbit,” Bailey explained. “It is possible that in the case of the HD 106906 system the star and planet collapsed independently from clumps of gas, but for some reason the planet’s progenitor clump was starved for material and never grew large enough to ignite and become a star.”

According to Bailey, one problem with this scenario is that the mass ratio of the two stars in a binary system is typically no more than 10 to 1.

“In our case, the mass ratio is more than 100 to 1,” she explained. “This extreme mass ratio is not predicted from binary star formation theories – just like planet formation theory predicts that we cannot form planets so far from the host star.”

This system is also of particular interest because researchers can still detect the remnant “debris disk” of material left over from planet and star formation.

“Systems like this one, where we have additional information about the environment in which the planet resides, have the potential to help us disentangle the various formation models,” Bailey added. ” Future observations of the planet’s orbital motion and the primary star’s debris disk may help answer that question.”

At only 13 million years old, this young planet still glows from the residual heat of its formation. Because at 2,700 Fahrenheit (about 1,500 degrees Celsius) the planet is much cooler than its host star, it emits most of its energy as infrared rather than visible light.

Direct imaging observations require exquisitely sharp images, akin to those delivered by the Hubble Space Telescope. To reach this resolution from the ground requires a technology called Adaptive Optics, or AO. The team used the new Magellan Adaptive Optics (MagAO) system and Clio2 thermal infrared camera, both technologies developed at the UA, mounted on the 6.5 meter-diameter Magellan telescope in the Atacama Desert in Chile, to take the discovery image.

UA astronomy professor and MagAO Principal Investigator Laird Close said: “MagAO was able to utilize its special Adaptive Secondary Mirror, with 585 actuators, each moving 1000 times a second, to remove the blurring of the atmosphere. The atmospheric correction enabled the detection of the weak heat emitted from this exotic exoplanet without confusion from the hotter parent star.”

“Clio was optimized for thermal infrared wavelengths, where giant planets are brightest compared to their host stars, meaning planets are most easily imaged at these wavelengths,” explained UA astronomy professor and Clio Principal Investigator Philip Hinz, who directs the UA Center for Astronomical Adaptive Optics.

The team was able to confirm that planet is moving together with its host star by examining Hubble Space Telescope data taken eight years prior for another research program. Using the FIRE spectrograph, also installed at the Magellan telescope, the team confirmed the planetary nature of the companion. “Images tell us an object is there and some information about its properties but only a spectrum gives us detailed information about its nature and composition,” explained co-investigator Megan Reiter, a graduate student at the UA department of astronomy. “Such detailed information is rarely available for directly imaged exoplanets, making HD 106906 b a valuable target for future study.”

“Every new directly detected planet pushes our understanding of how and where planets can form,” said co-investigator Tiffany Meshkat, at graduate student at Leiden Observatory in the Netherlands. “This planet discovery is particularly exciting because it is in orbit so far from its parent star. This leads to many intriguing questions about its formation history and composition. Discoveries like HD 106906 b provide us with a deeper understanding of the diversity of other planetary systems.”

A paper describing the results, entitled, “HD 106906 b: A Planetary-mass Companion Outside a Massive Debris Disk,” has been accepted for publication in The Astrophysical Journal Letters and will appear in a future issue. A copy of the paper can be downloaded here. MagAO was funded by NSF MRI, TSIP, and ATI awards, and Vanessa Bailey was funded by the NSF Graduate Research Fellowship Program.
The members of the discovery team are Vanessa Bailey (University of Arizona [UA]), Tiffany Meshkat (Leiden Observatory [LO]), Megan Reiter (UA), Katie Morzinski (UA), Jared Males (UA), Kate Y. L. Su (UA), Philip M. Hinz (UA), Matthew Kenworthy (LO), Daniel Stark (UA), Eric Mamajek (University of Rochester), Runa Briguglio (Arcetri Observatory [AO]), Laird M. Close (UA), Katherine B. Follette (UA), Alfio Puglisi (AO), Timothy Rodigas (UA, Carnegie Institute of Washington [CIW]), Alycia J. Weinberger (CIW), and Marco Xompero (AO).

HD 106906 b: A planetary-mass companion outside a massive debris disk

Discovery image of HD 106906 b in the thermal infrared (4µm wavelength) from MagAO/Clio2, processed to remove the bright light from its host star, HD 106906 A. The planet is more than 20 times farther away from HD 106906 A than Neptune is from our Sun.

We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: J, KS, and L′, and lies at a projected separation of 7.1” (650 AU). It is confirmed to be comoving with its 13±2 Myr-old F5 host using Hubble Space Telescope/Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict the companion’s luminosity corresponds to a mass of 11±2MJup, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette J/H/K spectrum as L2.5±1; the triangular H-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric (e>0.65) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations >35 AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at <1%, is unusually small. For more on HD 106906 b see: Bailey, V., et al. "HD 106906 b: A planetary-mass companion outside a massive debris disk". ApJL, 780, L4, 2013 ADS   preprint [pdf] arxiv preprint

2014A call for proposals

MagAO with its visible camera VisAO (r’,i’,z’,Ys) and IR camera Clio2 (J, H, and optimized Ks, L’, M’) science cameras will be open for use by the Magellan community in 2014A. For target planning purposes the system will likely be available for a ~3 week run in the March-May 2014 time frame (although final dates are not yet available).  The system will be run by the MagAO team for users in a mini-queue approach (as successfully executed during the second commissioning run) over that ~3 week period.

For the performance of the system and a list of filters for the cameras (etc) please see our web page for MagAO observers:

Information For Observers

Making giant telescope mirrors

MagAO and VisAO got a lot of press last week, when we announced our first-light results — demonstrating diffraction-limited imaging with 0.02 arcsecond resolution. This is the finest resolution of any filled-aperture long-exposure images ever taken! See the press release here.

But did we ever tell you where the Magellan telescope primary mirrors come from?

Steward Observatory Mirror Lab at the University of Arizona

They come from the Steward Observatory Mirror Lab (SOML) and it is the only facility in the world making giant self-supporting monolithic mirrors. Testing and polishing is also done right here in the facility. At the SOML the techniques were researched, developed, and executed by a team led by Roger Angel (who was awarded the Kavli Prize for his work). All of our beautiful images coming out of MagAO and VisAO would not be possible if the telescope mirror wasn’t producing an amazingly flat wavefront. The primary mirror must be stiff and strong, but also quickly responsive to changing temperatures for maximum stability. This is accomplished by an innovative hollow honey-comb structure for the glass mold that is both strong and lightweight. The glass is melted in a 2000-deg.(F) furnace spinning at 5 rpm to produce the proper shape, before being polished to a perfection of 20 nm rms.

Bear Down.

This past Saturday was the casting of the GMT3. The Giant Magellan Telescope (GMT), not to be confused with the Somewhat-Less-Giant Magellan Telescope, is a 25-m-diameter telescope being built for use at Las Companans Observatory in Chile. The GMT will be on a neighboring peak to our own at LCO. Once we get tired of MagAO/VisAO images (lol), GMT will be one of the next telescopes producing the highest-resolution images ever!

A model of the Giant Magellan Telescope

GMT3 is the third off-axis segment for the GMT. The first and second segments have been cast, and this past weekend marked the melting and beginning of the cooldown of the glass for the third segment. Here are some pictures and videos we took at the event. For the official stuff go here.

Here is the third segment, GMT3. It is spinning at 5 rpm in a 2000-deg. furnace to melt the glass.

And here’re some videos of the action, showing the spinning oven:

The first two segments have already been cast and are stored in the mirror lab:

The first segment of the telescope, called GMT1, cast in 2005. It is now complete, with a better than 20 nm RMS surface polish.

The second segment, GMT2, was cast in 2012. This is its backside, which was first smoothed to prepare for mounting in its cell. It will soon be flipped, and polishing will begin on the front optical surface.

And here is the fourth segment… we’re halfway there!

The fourth segment, GMT4, is in pieces here.

The participants in the casting event were members of the GMT consortium and their guests

The mirror lab is hard at work on other projects too, 24/7. During the tour the LSST primary mirror was being polished:

This is the large polishing machine, where the LSST is spinning around while the stress lap polishes it to perfection.

Peter Strittmatter explains the spin-casting process.
This is the test tower used to measure the wavefront of the mirror blanks during polishing. There at the top, that’s me! You can see my name tag reflecting off the 3-m spherical mirror used to test the mirrors — I was standing in the right place on the floor.
Roger Angel shows off his new furnace, for fabricating solar-telescope mirrors.