Summer in (and out of) the lab

MagAO-X integration and testing continues apace, with Jared shaving microseconds off the loop latency, Kyle working on making the world’s flattest DM, and Alex H. identifying holes in our hardware that were made in the wrong place. The rest of us are fighting with hardware more indirectly, getting our simulations to converge or our embarrassingly parallel jobs to be more than a (parallel) embarrassment.

Lauren Schatz, pyramid wavefront sensing person extraordinaire, has recently been the victim of delegation by the P.I. Her task? Arranging the weekly group meeting. In retaliation, she decided the venue would be outdoors. On a 95ºF (35ºC) day.

Our recent meeting was graced by a special guest: incoming graduate student (and NSF Graduate Fellow) Logan Pearce! She talked to us about research she’s been doing with Adam Kraus at University of Texas at Austin using data from the Gaia mission. This fall she plans to join the XWCL and MagAO-X team here at The University of Arizona. Welcome, Logan!

Several of us (but not this author) will be at AO4ELT6 next week, and everyone is diligently working on their posters and talks. If you’re there, keep an eye out for our group:

  • Monday, June 10
    • Development of the Three Sided Pyramid Wavefront Sensor — Lauren Schatz (poster)
    • Focal plane wavefront sensing and control with a vAPP coronagraph on MagAO-X using holographic modal wavefront sensing and linear dark field control — Kelsey Miller (poster)
  • Tuesday, June 11
    • Characterization and closed-loop laboratory testing of deformable mirrors for the MagAO-X project — Kyle van Gorkom (talk @ 9:40 AM)
    • Real-time estimation of NCPA and exoplanet detection in the face of wavefront measurement error in extreme-AO coronagraphs — Alexander Rodack (talk @ 5:40 PM)
    • Imaging habitable planets in optical/NIR with large ground-based telescopes: WFS/C challenges, opportunities and R&D activities — Olivier Guyon (poster)
  • Thursday, June 13
    • The Current Optical and Mechanical Design for the GMT High-Contrast Exoplanet Instrument GMagAO-X — Laird Close (poster)
  • Friday, June 14
    • From MagAO-X to GMagAO-X: extreme-AO performance demonstration and science case for the GMT — Jared Males (talk @ 10:00 AM)

In recognition of recent climatic developments in Tucson, Arizona, your author has selected this as the song of the day:

“Too Darn Hot” by Cole Porter, performed by Ella Fitzgerald.

Placing our 2040-actuator deformable mirror in MagAO-X

As of today, our 2040 actuator Boston Micromachines MEMS deformable mirror (BMC-2K DM, for short) has been moved to MagAO-X instrument optical table. With a cost of roughly three houses, it’s by far the most expensive piece of the whole project. (If you don’t count paying half a dozen graduate students for half a decade.)

View of the BMC-2K DM mounted in its holder on our MagAO-X optical bench.
The BMC-2K in all its glory, finally in place atop the MagAO-X optical balcony.

So, why is it important? And what makes it so expensive?

Adaptive optics involves first sensing the shape of an incoming wavefront of light to determine aberrations, then deforming a reflective surface to perfectly cancel out as much of the aberration as you can. So, as you might guess, a deformable reflective surface is key.

Extreme adaptive optics is an informal term for the next stage in the evolution of adaptive optics for astronomical high-contrast imaging. We’re running our system faster than predecessor systems like MagAO (in terms of the number of measurements and corrections each second), placing more stringent tolerances on all of our optical surfaces, and using more actuators on our DM. Unlike the MagAO system, which deforms the telescope’s secondary mirror directly, MagAO-X uses three DMs placed at images of the pupil within the instrument enclosure.

Dr. Jared Males leaning over some cable assemblies to disconnect them.
The P.I. disconnects one of the 16 sets of ribbon cables necessary to interface the DM with its high-voltage drivers.

The first DM in the optical path, an ALPAO DM97, is a large-stroke device, meaning it can deform a whole 80 µm from one edge to the other. This is about the diameter of a human hair, which doesn’t seem “large”, but for H-alpha (0.656 µm) photons 80 µm is over 120 wavelengths. The flip-side is that it has only 97 actuators. We call this the “woofer” by analogy with speaker systems, since it can only correct aberrations with low spatial frequencies.

The last DM the light will encounter before being imaged onto a detector is another ALPAO DM97. This one is tasked with squashing “non-common path” aberration: basically, any aberrations we’re introducing ourselves within the instrument that aren’t being sensed by our wavefront sensor.

Interface plate where ribbon cables from the DM driver meet ribbon cables from the DM.
Not for nothing is this thing called the octopus.

The device we moved today is the “tweeter”, responsible for correcting the high-spatial-frequency modes that generate speckles in our images. These speckles can look awfully similar to planets, and can even persist in a quasi-static way in a series of images. After we’ve taken out the low-frequency content with our woofer, the residual aberration is smaller amplitude but higher frequency.

Our BMC-2K DM lets us cancel out these aberrations to a high degree, resulting in more control over speckle-causing aberrations and less light lost from the core of the image of each star or planet.

Thanks to Jared Males, Kelsey Miller, and Lauren Schatz for the patient explanations that informed parts of this writeup.

Meet the new blog, same as the old blog

To simplify maintenance, we’re making the MagAO-X blog a continuation of the MagAO blog. Going forward, we will be doing our project updates here on I did my best to migrate things without breaking references to our previous nine years (!) of posts. However, if you notice any broken links to, do let me know.